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Particle size distributions in the atmosphere are not smooth, and the application of 
the usual smoothing constraints to the inversion of indirect measurements of such 
distributions is unsuccessful for this reason, even though the method used is successful 
for hypothetical (but unreal) distributions. It is shown that nonlinear iterative procedures 
can be applied successfully in either situation. 

INTRODUCTION 

The inference of particle size distribution from measurements of the number of 
particles transmitted through filters with known filtration characteristics gives rise 
to a very typical inversion problem, wherein the kernels (the filter transmission as a 
function of particle size) are smooth and “band limited,” in the sense that the 
kernels fall to zero with finality on each side. In these respects, there is a strong 
similarity to “optical” kernels, even though the physics and dimensions are very 
different in the two problems. 

Particle distributions in the atmosphere are, however, far from smooth even 
when averaged, for they are known to exhibit behavior of the form f(r) = ArP 
with 01 N 4 over a portion of the range, but fall toward zero below some size which 
is a priori unknown. If, for example, one plots the distribution 

f(x) = Ar-3 exp(- 10-12r-2), (x = In r), 

the result (Fig. 1) is a distribution which is probably close to that of many real 
atmospheric particle distributions. If, however, the result is plotted on a linear 
scale, it is far from smooth. Clearly the smoothness could be greatly enhanced by 
transformation to r3f(x), but the inverse cubic form of the distribution holds only 
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FIG. 1. A typical distribution function for the atmospheric aerosol. 

approximately and on average; furthermore, the peak of the distribution obviously 
must occur where no inverse power law holds even approximately. Clearly, two of 
the most fundamental parameters which one might hope to derive from measure- 
ments are: (1) the location of the peak, and (2) the most appropriate value of the 
exponent (i.e., the slope of the distribution) in the region where an inverse power 
law tends to hold. Any method of inversion which places constraints on either or 
both of these aspects of the solution is therefore undesirable. In the following 
sections, we will give examples of the application of linear constrained inversion 
techniques to this problem and will also discuss a nonlinear iterative algorithm 
which gives results that seem to be, in general, superior and are, in a sense, less 
constrained than those given by the more familiar procedure. In each case, the 
goal is the retrieval (as far as possible) of the function f(x) from measurements 
a, g, ,..., g,, where 

gi = s,” &(x)f(x) dx + noise. 

Figure 2 shows a set of kernel functions, They are, in fact, filter transmissions for 
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FIG. 2. Transmission curves (i.e., kernel functions) for a set of measurements using severa 
Nuclepore filters at various flow rates. 

Nucleporel filters at various air flows as a function of particle radius. In the context 
of these problems, it is more realistic and more useful to use the logarithm of 
radius, rather than radius, as the independent variable, and x in (1) above may be 
identified with log r. Where possible, however, the discussion will be kept general, 
and there will, in fact, be little need to refer to the specific physics of particle 
filtration. The band-limited behavior arises from the removal of small particles by 
diffusion to the pore walls and the removal of large particles by impaction and 
simple mechanical sieve-type removal. The smooth nature of the kernels arises 
from the fact that the diffusion coefficient and the particle radius and mass, which 
are the relevant physical parameters, are themselves smooth, indeed monotonic, 
functions of size. 

1. APPLICATION OF CONSTRAINED LINEAR INVERSION 

Numerical Method 

The principle of constrained linear inversion has been applied in a variety of 
physical problems. A fairly detailed discussion was given by the writer in an earlier 
paper [4]. For completeness, however, a short summary will be given at this point, 

If K&c) is smooth, then the change in gi brought about by the addition of a 

1 General Electric Company, Pleasanton, CA. 
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periodic term to f(x) in (1) decreases rapidly with increase of frequency of the 
periodic term. In other words, 

decreases with increase of w. The rate of decrease will depend on the nature of the 
kernels; for many physical kernels, the decrease will be at least as fast as W+ or 
even w-~. There is thus an inherent insensitivity of gi (for all i) to higher-frequency 
components and an instability on inversion, whereby small noise (error) compo- 
nents in measured or numerically computed gi give rise to extremely large spurious 
oscillations in the “solution.” The instability cannot be removed, but it can be 
avoided if one adopts a constrained method of solution wherein the smoothest 
possible solution is selected from all those f(x) which give gi lying within a pres- 
cribed distance from the measured gi . The algebra of this process is straight- 
forward: 

Given 

s K*(x) f(x) dx = gi + pi , 

this is transformed to a quadrature 

or in matrix notation 

Af=g$e. 

(Any quadrature error need only be incorporated into ci .) The problem is then to 
find the “smoothest” vector (fi , fi ,...,&J f rom the manifold of vectors for which 
C Et2 is less than or equal to some prescribed overall error, e2. One can adopt 
different measures of departure from smoothness, for example: 

the variance, C cf; - f)z, 

the sum of squares of first differences, C (h -J;:-1)2, 

the sum of squares of second differences, C(J;: - 2J;:-, +h-2)2, 

and so on, but all, including more complicated spectral formulations, can readily 
be shown to be quadratic forms which in vector-matrix notation may be written 
f*Hf, where the asterisk denotes transposition and H is a matrix which is deter- 
mined by the measure of smoothess selected. For simple measures of smoothness, 
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H takes a simple form, e.g., it is the identity matrix if one uses as a measure the 
variance off. Constrained inversion is thus accomplished by finding that vector f 
which makes f*Hf a minimum while 

1 EC2 = E*E = (Af - g)* (Af - g) (3) 

is held fixed. This familiar mathematical problem is solved by the method of 
Lagrangian multipliers; in fact, one finds the extremum of 

(Af - g)* (Af - g) + yf*Hf, 

where y is the undetermined Lagrangian multiplier. Differentiation with respect to 
fi , fi ,..., fm leads to a linear system of equations in h , fi ,..., fm , the solution of 
which is readily found as: 

f = @*A + yH)-l A*g. (4) 

The undetermined multiplier y is uniquely determined by the prescribed error 
magnitude 1 Et23 but the relationship is a complex one, and it is far easier to obtain 
the solution for several values of y and obtain C ci2 by substitution of the solution 
into (3). 

Results 

Starting with an assumed distribution and a set of kernel functions (each kernel 
being the transmission curve of a filter at a specified flow rate), a set of data was 
computed giving the fraction of the initial total particle number transmitted at 
each filter/flow rate combination. For convenience, each such combination will, in 
the future, be referred to as a “filter”; “filter function” or “filter transmission” 
will be understood in the same sense. The direct measurement of total particle 
number was also included as a filtered measurement made with a filter of unit 
transmission at all particle sizes. 

For “reasonable” distributions, this method gives excellent results. 
(Unfortunately, real atmospheric particle distributions are not reasonable.) Figure 3 
shows an assumed original distribution (bimodal but otherwise smooth) and 
solutions given by inversion according to (4) of the calculated transmissions through 
17 filters (which incidentally were restricted to physically possible filters; 
unrealistically large or small flow rates, for example, were excluded). The 
smoothing constraint employed was that of minimum variance, so that the identity 
matrix I was employed for H. 

The conclusion that filter measurements of the kind envisaged can give, by 
inversion, size distribution to the degree of agreement and resolution suggested by 
Fig. 4, is not however warranted unless the necessary experimental accuracy can 
be achieved. Table I shows the high accuracy needed. 
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FIG. 3. An assumed bimodal distribution (heavy curve) and the result of inverting Clter 
measurements (calculated) by constrained linear inversion with a smoothing parameter y. 

ADJUSTMENT BY 

FIG. 4. Illustration of the iterative adjustment process applied by Eq. Q, as contrasted with 
procedures (e.g., Eq. (6)) in which only one point is adjusted at a time. 
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TABLE I 

y vs. Relative Error 

IO-2 1.5 % 

10-s 0.3 % 

10-d 0.09 % 

10-s 0.03 % 

10-e 0.007 % 

In field measurements of particle number, a relative accuracy of a few percent is 
achievable with some difficulty, but fractional percent accuracy is hardly possible. 
Thus the inversion for y = 1O-2 represents about the best that could be achieved 
in practice with a well-behaved unknown distribution. The “measured” numbers 
ranged from about 20 to 100% of the total, so the measurement would not be 
unduly demanding from the point of view of the “dynamic range” of number over 
which the measurements would have to extend. 

Turning now to a more realistic distribution, a Junge-type (inverse cube) distri- 
bution down to x = -5.7 (i.e., radius 2 x 1O-6 cm), falling to zero at x = -6.0 
(radius 1O-6 cm), the results of applying the same procedure were extremely 
disappointing. The results are too poor to be effectively shown in a figure, but they 
show either (for smaller r) large oscillations or (for very large 7) smoother curves 
which do not agree very well at all with the original function from which the data 
were generated. The difficulty evidently arises from the nature of f(x), since the 
inversion procedure was exactly the same as for Fig. 3. 

An inverse-cube distribution as mentioned earlier, is very far from smooth. If 
there are good grounds for expecting the solution always to behave in this way, 
some of the trouble can be resolved by looking upon r3f(x) rather than f(x) as the 
unknown and applying the smoothing constraint to it. If C is a diagonal matrix 
such that Cii = ri3, then the fundamental equation 

can be rewritten 
Af=g+e 

AC-l(Cf) = g + E. 

If this equation is inverted by (4) with Cf treated as the unknown, one obtains 

Cf = (C*-lA*AC-l + yH)-l C*-lA*g 
= C(A*A + yC*HC)-l A*g 

f = (A*A + yC*HC)-l A*g. 
(5) 
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Thus the constraint can be modified so as to “see” an inverse-cube distribution (or 
for that matter, any other power) as smooth. If, for example, H = Z, then the 
inverse-cube behavior is forced just by adding ray rather than y to the diagonal 
elements of A*A. However, this forcing is often undesirable and may force an 
inverse-cube behavior where it does not really exist. 

2. THE NONLINEAR ITERATIVE INVERSION 

Discussion 

When the kernel function has a single maximum such that the ith kernel attains 
a maximum at say x = ti , then the value of the object distribution near fi has the 
greatest relative influence on the ith measurement. This has been the basis of 
iterative schemes used successfully by Chahine [l] and by Grass1 [2]; iterative 
methods have also been applied successfully by Smith [3]. The basis of the Chahine 
method is to start with a first guess&(x) and repeatedly proceed through each of 
the m measurements, adjusting at each step only the ordinate for the value of x for 
which the corresponding kernel attains a maximum. Iff,(x) denotes the iterated 
function after the pth pass through the set of m measurements (in other words, the 
[{ p - l} m + i] th iteration), then&+,(x) is obtained fromf,(x) by: 

This method obviously is applicable only when the number of tabular x values is 
equal to the number of measurements and when each measurement can be asso- 
ciated with one of the tabular x’s. Furthermore, the larger the number of measure- 
ments, the higher the frequencies permitted by the spacing in x and the greater the 
opportunity for instabilities. The precise limit to the number of tabular points in x 
for stability to be maintained obviously depends on the spectral behavior of the 
kernels. If no kernel varies across an interval by more than the error component, 
then clearly conditions for instability exist. 

The problem of instability can be looked at in the context of orthogonal func- 
tion vectors and linear function space. If the object function is expanded in terms of 
orthogonal functions 4,(x), &(x),..., 

then obviously cle cannot be inferred from measurements of f. Ki [using the 
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shorter dot-product notation for 6 K,(x) f(x) dx], if &(x) happens to be 
orthogonal to each of the &(x), for ck can then have any value without altering any 
of the yi . However, if some C$ * K is very small for all the K’s the situation is just 
as bad, since large changes can be made in ck: with only a slight change resulting in 
any Yi . 

There is therefore considerable value in approximations to f(x) by means of 
sums of the kernel functions themselves: 

f(x) = a,&(x) + a,&(x) + *** + MG,d~). 

This is algebraically equivalent to expansion of f(x) in terms of orthogonal func- 
tions derived from the Ki(x), but use of such functions had the disadvantage that, 
if there exist nontrivial combinations of the K’s which almost vanish throughout 
the interval of interest, there will be some orthogonal functions which are represen- 
ted only very weakly in the set Z&(x), i = 1, 2,..., m. Use of the nonorthogonal K’s 
reduces such problems of near-singularity. 

These considerations relate most directly to the question of information content 
in a set of measurements with nonorthogonal kernels, but they also suggest a 
modification of the nonlinear iterative procedure which increases its stability and 
allows the number and location of tabular points in x to be made independent of 
the number of measurements. The algorithm suggested differs from that of (6) in 
that, instead of modifying only the ordinate for x = li when one is dealing with the 
measurement the kernel of which attains a maximum at x = ti , one modifies the 
previous iterate over the entire region where the kernel is nonzero, with a weighting 
proportional to the value of the kernel. The procedure is as follows: If ry-l) 
denotes the ratio of the observed gi [i.e., J K(x) f(x) dx] to J K(x) f!-“(x) dx, then 
the ith iteration is: 

f;‘(x) = [I + (rt-‘) - 1) Ki(x)] f!-“(x). (7) 

The kernels involved here, being filter transmissions, necessarily have ] Ki(x)j < 1 
for all x and i. If kernels exceeding unity were involved, they should be scaled to 
ensure 1 &(x)1 < 1; this is essential to ensure thatfX’(x) never can become negative. 
The procedures are illustrated in Fig. 4. Note that the shape of the alteration 
obtained with (7) is set mainly by the kernel; it will not become narrower if a greater 
number of tabular x’s are employed. Furthermore, there is no necessity to assign 
for each of the kernel functions a nodal value of x, a highly artificial procedure 
when the kernels are the flat-topped functions shown in Fig. 2. It may be noticed 
that if the change effected in any one iteration is small, then the procedure of (7) 
tends to constrain the iterated function to remain in the function subspace spanned 
by K,(x), &(4,-v K,(x) if the previous iterate is within that subspace. In fact, if 
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the first guess weref(x) = 1 and a sequence of small changes were made, the result 
would be 

where the /3’s represent the value of [rt-l) - l] at each iteration. To the extent that 
quadratic and higher combinations of the B’s can be neglected, the iterates can be 
written 

The change at any iteration can, of course, be scaled down by any desired factor 
at the expense of computation time. 

Results 

Figure 5 shows the result of applying the iterative algorithm of (7) to the inversion 
problem where the constrained linear inversion procedure gave the solution shown 
in Fig. 3. The solution in Fig. 5 is seen to be of comparable quality to that in 
Fig. 3. 

FIG. 5. The iterative procedure applied to the same data as used for Fig. 3. 
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In the case of the inverse-cube distribution where the constrained linear inversion 
failed to give a useful solution (except by the introduction of weights which 
artificially force an inverse-cube solution), the iterative algorithm was highly 
effective. Figure 6 shows the solution obtained for the distribution shown: Evidently 
the slope was recovered very well and the position of the peak in the solution was 
not far from that of the original. 

O.Ol$ \ 

-6 -7 -6 -5 

FIG. 6. The iterative procedure applied to filter data calculated for an object function similar 
to a real atmospheric aerosol distribution. 

It is important to realize that a solution of the quality shown here, wherein f(x) 
is accurately recovered over three decades in f(x), was achieved with a similar 
range in magnitude of the gi , which ranged from 140 down to 0.001. No existing 
instrument can measure particle concentrations accurately over five decades of 
concentration, and it is not being suggested that solutions of the quality of that 
shown in Fig. 6 are technologically feasible at present. In other fields, the dynamic 
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range of measurements is not so restricted and solutions of this accuracy and 
dynamic range may be feasible. 

3. EFFECT OF ERRORS 

To assess the effect of errors on the solution obtained, we have repeated some 
inversions after a random error component was introduced into the gi . The 

Y 

. 

x 

. 

FIG. 7. The effect of introducing random errors in g is shown by the crosses. The dots re- 
present the solution obtained when the error was not introduced. 
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inversions were found to be quite stable with respect to such errors. Figure 7 shows 
an initial hypothetical distribution, the inversion obtained after 100 passes through 
a set of 16 gi using (7) (these results being indicated by dots), and the inversion 
obtained after the same number of iterations when gi was adulterated by a random 
error of &4 ‘A (r.m.s. value 2.3%). The effect of the errors is seen to be slight in 
comparison to the differences between either solution and the original hypothetical 
distribution, and they have not introduced any additional oscillatory instabilities 
in the solution. 

CONCLUSIONS 

The iterative nonlinear algorithm described by (7) possesses advantages over 
more familiar and more direct inversion methods when the object function and the 
measurements extend over a wide dynamic range. Stability is achieved by the 
process itself, since a smooth initial guess is multiplied by smooth adjusting 
functions at each step. The method is, however, considerably slower than con- 
strained linear inversion, requiring about five times more computing time. 
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